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Analysis of Elastic-Plastic Shells of Revolution
Containing Discontinuities

Davip A. SpERA*
NASA Lewts Research Center, Cleveland, Ohio

The common junction of three dissimilar general shells of revolution is analyzed. Axisym-
metric loading may be in the form of surface forces, concentrated forces and moments at the

junction, and arbitrary thermal gradients.

Basic differential equations available for elastic

shells are extended for application in the elastic-plastic regime. The von Mises-Hencky
yield criterion, deformation theory of plasticity, and successive approximations are used to
determine plastic strains. Postyield material behavior is arbitrary. Linearized finite-differ-
ence equations are solved directly using coefficient matrices that incorporate conditions of
equilibrium and compatibility at the junction discontinuity. The solution to a sample prob-

lem is given.

Nomenclature
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extensional rigidity, f » B dt, 1b/in.
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1 .
flexural rigidity, m fh E¢2di, Ib-in.

modulus of elasticity, psi

radial and tangential stress resultants, 1b/in.

thickness of shell wall, in.

couple, lb-in. /in.

distributed surface load, psi

radial, meridional, and axial coordinates to reference
surface, in. ’

temperature, °F

radial deflection, in.
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Poisson’s ratio

s/on

normal stress, psi

=

—~
~

S LR I8

&

q A o® P
[Tl

Subscripts
a,b,c
d
'eyt;p
HYV
Y]
8757&‘

Superscripts

junction, shells a, b, and ¢, respectively
boundary, shell ¢

effective, total, and plastic

radial and axial

station indices

circumferential, meridional, and transverse

e = external
(A) = reference surface

Introduction

N certain missile and space vehicle structures, small plastic
strains may be permitted in an effort to use material more
efficiently. In addition to increasing allowable loads on
continuous shell regions, a small amount of yielding may have
the beneficial effect of relieving maximum stresses in regions
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preciation to Harold Renkel for his development of a computer
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of discontinuity. The purpose of this paper is to present a
shell analysis with which both this reduction in stress con-
centration and the corresponding increase in strain concen-
tration may be determined quickly and accurately.

Many analyses have been presented for elastic shells of
revolution containing discontinuities. One of the most gen-
eral and convenient is that proposed by Radkowski et al.?
In this reference, basic differential equations derived by
Reissner? are solved by a very direct finite-difference tech-
nique, which employs coefficient matrices. Continuous shell
regions are analyzed separately for five independent sets of
boundary conditions and are then joined at discontinuities
using the well-known method of simultaneous junction equa-
tions and superposition.

Mendelson and Manson? presented a method for analyzing
thermal stresses in & uniform cylindrical shell in the elastic-
plastic regime. This method was later applied to general
shells of revolution by Stern,* using the earlier Reissner-
Meissner differential equations. Both of these references
are applicable only to continuous shell regions. In addition,
the numerical method employed in Ref. 4 requires the simul-
taneous solution of a set of equations. Because each finite
difference station along the shell meridian adds two equations
to this set, this method is more limited than that of Ref. 1.

References 1 and 2 were used by Wilson and Spier® to
develop a solution for the small finite elastic deformations of
continuous shells of revolution. This problem is similar
to that of elastic-plastic deformation in that nonlinear terms
oceur in the basic differential equations of each. Also, in
both Refs. 3 and 5 the equations are linearized by treating
the nonlinear terms as knowns and correcting their values by
successive approximations.

The present analysis is much more general than previous
work because it is applicable to both continuous and dis-
continuous shell regions in the elastic-plastic regime. A
wide range of shell geometries, loadings, and material prop-
erties may be specified. For elastic discontinuity problems,
multiple solutions and simultaneous junction equations are
eliminated. In addition, a great measure of the generality,
directness, and convenience of the shell analysis of Ref. 1
is preserved in the presence of discontinuities and plastic flow.

Method

The common junction of three dissimilar general shells of
revolution is used as a general discontinuity model (Fig. 1).
Wall thicknesses, material properties, distributed loads, and
temperatures may vary along the several shell meridians.
In addition, material properties and temperatures may
vary arbitrarily through the shell walls. These data may



2584 D. A. SPERA

| BOUNDARY, j=d

!
I
I
I JUNCTION ~UNDEFORMED
! REFERENCE

\ SURFACE

J f—u
|‘;—DEFDRMED

REFERENCE

SURFACE

SHE
BOUNDARY, j=o+!

AXIS OF REVOLUTION

F
SHELL A--..

1
\ Z s
|_BOUNDARY, | =I l l

Fig. 1 Meridional geometry of general shell discontinuity
strueture.

be specified at discrete points, if desired. An external axi-
symmetric force and couple are applied at the junetion for
further generality.

The analysis of the three continuous shell regions is con-
sidered first. Basic differential equations of Ref. 2 are ex-
tended for application in the elastic-plastic regime in accord-
ance with Ref. 3. These modified linearized equations are
then solved by the finite-difference technique of Ref. 1 for
two quantities, (rH) and 8, from which all stresses and strains
in the shell may be computed. The shell meridians are
traversed twice: first, to compute coefficient matrices at
each station using geometrical and load data; and, second,
to calculate (rH) and 8.

After the continuous regions are analyzed, junction equa-
tions are derived which express the structural continuity
that exists at the intersection of the three shells. Since dis-
continuity forces and couples are not linear with applied
loads in the elastic-plastic regime, standard methods of
analysis which use linear edge influence coefficients; 7 are
not applicable. Instead, the junction equations are satisfied
by incorporating them direetly into the previously mentioned
coefficient matrices, which preserves. the direct character
of the finite-difference technique. Finally, the numerical
technique is summarized, and a sample problem is solved for
both strain-hardening and perfectly-plastic material behavior.

)
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Fig. 2 Stress resultants, couples, and loads.
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In addition to the usual assumptions of thin shell theory,
the von Mises-Hencky yield criterion and the deformation
theory of plasticity are assumed to be valid. Postyield mate-
rial behavior is arbitrary.

Analysis
A. Shell Equations

1. Basic differential equations

In accordance with the procedure developed by Reissner,?
equilibrium, compatibility, stress-strain, and strain-displace-
ment equations in a thin elastic shell of revolution may be
combined and reduced to two second-order coupled differen-
tial equations. The dependent variables are a representative
deformation 8 and a representative stress function (rH).
The independent variable is £, the meridional coordinate.
If extended to include plastic as well as elastic and thermal
deformations, these two basic equations become nonlinear
and have the following form:

(rHY” +T@H)Y +60H) +AB=M+ 1+ m (1a)
ﬂ”—i—’rﬂ'-—}—@ﬁ—{—z[/(r[{) =N+ 7+ T (1b)

Primeé denote differentiation with respect to £ and the
coefficients are

(r/Cag)’ _ (rD/ag)’ |
r/Cap " D/

r’ \2 (r"/Cap)’
& == [(7) T O }

"\*  ("D/a)’
= [(“> =7 " Dje ]

7

r =

!

2 z
A== Tl = rD/a

2! (2'/0010)’ 2 ,
{[w + —/aa—] V) +y (‘) " }

1 !
A = 7D/ @M

"= —al (% fh EaTd;)'
O !
R T V)D( f;. EaTt d;)
1 ’ 1
"= o [% fh Begp dt — (TZ* fhEeap d;)]

I '
el o]
1:—”2 j‘hE’(GOp + Veip)? df}

(1e)

The integrals through the shell walls may be evaluated
analytically or numerically.

The left-hand sides of Eqs. (1a) and (1b) and the loading
terms A\; and A, are identical with those derived in Ref. 2 for
elastic shells. The thermal terms 7, and 7. are developed in
Ref. 1. The plasticity terms 7 and 7, are derived in a similar
manner, by using the elastic-plastic stress-strain relations of
Ref. 3:

oo = [E/(1 — v)][(es + ver) —
(eap + verp) — (1 + »)al]

or = [B/(1 — v)]1[(ez + ves) —
("-Sp + Vfﬂp) — A 4+ »al]

(1d)
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Although these last two terms contain nonlinear plastic
strains, it is convenient to treat them not as unknown but as
known quantities that may be determined in an iterative
manner from previous, less accurate solutions. For example,
m and 7 may be assumed to be equal to zero to obtain an
elastic solution to Eqgs. (1). Values of € and €5, may be
calculated from these elastic results and used to obtain some-
what more accurate approximations for m and m.. This
procedure is repeated until additional solutions produce
negligible changes in the plastic strain terms.

General boundary conditions on Eqs. (1) can be expressed
in terms of the quantities (rH), (rH)’, 8, and B’. Because
these equations will be solved using the method of finite
differences, it is more convenient to express these boundary
conditions directly in difference notation. This is done in the
following section.

2. Basic difference equations

The shell reference meridians are divided into equal
inerements (Fig. 1). Using central differences, the derivatives
in Egs. (1) may be expressed as
(rH)ip — 20rH); + (tH)iu

(Af)? '

In matrix form, the basic shell difference equations then be-
come

(rH);” = ete.

(2,0 —1
Agipn + Byi + Fyja=¢i j={a+2b—1 ()
: le+1,d—-1

Capital letters represent 2 X 2 and lower-case letters 2 X 1
matrices.

These are
4 = [1+@gar 0 ] = [ 1]
L 0 14 (A/2)T] 10 an
B = -2 + (AD® (A5)A ] _ I:bu blz]
| (AN —2 4+ (ADR bat by
_[1-(agar 0 [h 0
=1 0o 1-nag T] - [0 fm] (@b)

o - [abtninl- [

_ [(TH):]
y =
B
Boundary conditions that may involve first derivatives of
(rH) and 8 require the use of forward and backward differ-
ences. A boundary condition may then be expressed as a
general linear combination of the unknowns at the boundary

and at the adjacent station.
In matrix notation, the boundary conditions become

Yi = k bnd Jy2
Yag1 = M = Lyjays 3)
ya =1— Ryd—l

‘3. Numerical integration

Following the method of Ref. 1, the equation matrix (2a)
issolved as follows. Set

yi = ¢ — Pyin (4a)
Then

Yia = g — Pioy; )
(4b)
yir = Pi g — y) )
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Substituting Eqgs. (4b) into (2a) gives

(=4;P;™ + By — FiPiy)y; +
(AiPi7q; + Figja — g1) = 0

This equation is satisfied independently of y, by setting
— APt 4 By — FiPi = AP +
Figin—g; =0 (4o)

Therefore,
Pj = (B, — FjP,'_l)_lA,' (5&)
2,a—1
j=1a+20-1
c+1,d—1
qi = Pid;7Y(g; ~ Figiz) (5b)
From Eqs. (3) and (4a),
P1=J Q1=k Pa+1:L Gatr = M (50)

Using the last of Eqs. (3) and Eq. (4a) results in
ya = (I — RPas)™'(t — Rqa_y) (6)

in which I equals the 2 X 2 identity matrix.

Equations for P., ¢., ¥s, and y. are needed to complete this
numerical integration. They will be derived in the next
section from the junction conditions. With these additional
equations, consecutive calculations of the y matrices may
be made using Eqs. (6) and (4a), after the P and q matrices
are calculated by Eqs. (5). For convenience, matrix equa-
tions (3, 4a, 5, and 6) are expanded in Ref. 6.

B. Junction Equations

1. Derivation

Certain conditions of compatibility and equilibrium must
be fulfilled at the junction of the three shells to maintain
structural continuity. These are 1) the junction is hinge-
less; 2) the reference surfaces of the three shells experience
equal radial deflections at their junction; and 3) a differen-
tial ring element that includes the junction section is in static
equilibrium.

The first condition leads directly to the equations

Bo = B = B. (7a)

If the superscript (A) is used to denote a reference surface,
the radial deflection of this surface at any station is 7j4, ;.
Therefore, the second continuity condition may be expressed
by the equations

eha = 0,b = ebc (7b)
Referring to Fig. 2, the junction equilibrium conditions are
(rH)e + (rH)y = (rH). — FH® (7¢)

in which 7 is the nominal radial eoordinate to the junction, and
Mio + My = My — M (7d)

Conditions (7b) and (7d) must be expressed in terms of
(rH) and B. Following closely the derivation in Ref. 1.
modified slightly by the stress-strain equations (1d),

L [(iH—)'—l’—'<rH)]+x3+n+m
o T

[2/]

C
%[—v@-i- TT(TH)]+>\4+T4+7T4[

il

€9
(8a)

¢ A
£ Qg 24
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in which
vz
)\3 = ’CT[TPH —_ &;’; (TV):I
1 17
M= [ —vrpa + % (rV)]
0
(8b)
1
Ta:?.fhEaTd’( Ty = T3
=4 [ Bepa =+ [ Beyd
T = o ), Heow dS o= ), BewdS
and
M: = D(xg + vrg) + 75 + 75 (8¢)
in which
’
—1
Kt =% = = [ BaT¢ds ]I
g . (8d)
% Ts:mfh(esp“l'”ep)E?df

The rotationally symmetric external junction loads H® and
Mg may arise through the action of an elastic constraint
such as a reinforcing ring, or they may be independent of the
ghell deformations. Therefore, let

} (8e)

o = Su(?’éa,c) + spB. + H

M = suFee) + suBe + My
The coefficients s to sy are spring constants, which can be
determined from the geometry and material properties of the
elastic constraint. They define the linear dependence of H*
and M on the deformation of shell ¢; M: may result from
nonconcurrence of the three reference meridians.

When only two shells are involved, Eqs. (7) may be easily
specialized by deleting the terms with the subscript 5. The
numerical solution of these modified equations will then be
similar to that of the following section.

2. Numerical solution

Before substituting Eqgs. (8) into Egs. (7), an expression
relating y;’ to y; is derived. In central difference notation,
using (4b),

! = Yirra = Yi-r _ Pioy — Py, + (Pl — gi-)

' 2(A% 2(A%)

or

v = Wiy, + x;
Using Egs. (4¢),

_ P =P
Wi 2(AD)
(I + A,"'F)P,_, — A;7'B, (9a)
2(A%)
_ @& — g
STV R

I+ 4,7'F)gjy — 4,7g;
2(A%)

Expanding the first of Eqgs. (9a) gives
(rH)i" = wu,;(rH); + wi2,i8; + 1 |
Bi" = wa,;(tH); + wn.b, + x,
After Egs. (7a) and (9) are substituted into Egs. (8), the

(9b)
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junction equations become

(rH)u = 5-11—' [51.C(TH)C + (62,c - 62,«1)6(: + (63,6 b 63,0)] (103,)

(rH), = glb [Bro(rH). + (Be.c — 826)Be+ (Bo,o — 355)]  (10b)

(TH)a + (TH)b = (1 - 7_'231151,0)(7‘H)c - _
F(Fsue,c + s12)Bec — F(Fsuds,c + H) (10e)
and

04,0(rH) o + 040(rH)y = (8s,. — Fsuby,o) *H). +
(55,c — 85,0 = 056 — 782189,c — $22) B +-
(86,6 — 06,0 — 86,5 — TSmb3,c — Mg) (1od

5. o (= 2/ N )

L 0(00 i e ao/D i
o = Wig o = We — V(T'/T))
2,§ OloC ; 5,3 au/D ;

8s,; = (ﬂ N W m)
0[00

O6,i = (a:/ZD + 7+ 7r5>

in which

(10e)

]

a
i=1b

i Lc

Substituting (rH), and (rH), from Egs. (10a) and (10b)
into Eqgs. (10¢) and (10d) yields

YirH)e + v28. = 73 (11a)
and
74(7'H)c + 7560 = Ys (11b)

Equations (11) will be satisfied independently of (rH). and
B.if
NN=Y=Vs=ve =7 =Y =0

or
6 _ 61,(161,17
he 01,0 + 81,6 + 72811014015
5 = 61,0026 + 82,0016 + 781201,001,6
e 51,;; + 60 + 72511164.81
5. = 51,a53,b + 53,a51,b + Fgﬁl,aal,b
%o 01,6 + 01,6 + 7%81101,a0 ¢
04,0 8ap ~
54,c = Bl,c(al,a + 51,1, + 7‘821>

(12)
0,0 84,6

65,0 = 62'5(& + g‘t + 732;) -

62,a64,a 52,b64,b
<51,a + Bes 05.a 05, 822)

04 , O
66,0 = 63,c<6::a + 3:—:: + 7821> -

65,a64,a 63,!754,1;
(au Ry

— 05,0 — 050 — IW£>

Using Egs. (12), Egs. (10e) may be solved for the com-~
ponents of the W, and z. matrices. Finally, Eqs. (9a) may
be inverted to give

Poy = {(4 + P)"12(AHAW + Bl}. )
f (13)
g = —{(4 + F)7'[2(AD Az — g)}.
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Table 1 Summary of numerical analysis procedure

Meridional
Step Quantities to be calculated stations Equation
1 J,L,R (3)
2 T,6,A,7,®,%,A\; t0 Ay,71 tO 74; 7 and m assumed 2toa (1),(8)
(usually based on ¢, and e, equal to zero) a+2tobd
ctod — 1
3 A,B,F Same as above (2)
4 g Same as above (2)
5 )\3,)\4,7’3 to T5,73 to s l,a,a + l,b,C,d (8)
6 kym,t 3)
ltoa — 1 (5)
7 Py {a +1tob—1
8 W.x a and b 9
9 81,0 1O 86.4,01,5 10 6.5 (10)
10 d1.¢ 1O B6.¢ junction calculations : (12)
11 W,z c (10)
12 Py J c—1 (13)
13 P ctod — 1 (5)
14 (rH),8 dtoc (6),(4)
15 (rH),8 — junction calculations banda (7),(10)
16 (rH),B b—1toa 41 4)
a—1tol
17 T3y e All (8)
18 20,8z,K3,k¢ All (8)
19 €0,€L, €4, €ot All (14)
20 €,.,3€9p, €Ep All (15)
21 T, T2 [2 to a (1)
Repeat steps 4 to 19 until convergence of egp a+2tobd :
and egp ic tod — 1
22 0,0t All (1),(16)

Although no station § = ¢ — 1 actually exists in shell ¢,
it is convenient to assume its fictitious presence and then to
use Eqgs. (5) to calculate the elements of P., ¢., and the re-
maining coefficient matrices in the structure. The terms
(rH) and B are then calculated with Fqs. (6) and (4a) for
shell ¢, Egs. (7a, 10a, and 4a) for shell ¢, and Eqgs. (7a, 10b,
and 4a) for shell 5. Stresses and strains throughout the
structure may then be calculated from these basic shell
variables as shown in the following section. Equations (9)
and (13) are expanded in Ref. 6.

C. Elastic-Plastic Strain Equations

Derivation of the following elastic-plastic strain equations
is given in detail in Ref. 3, in accordance with the von Mises-
Hencky yield criterion and the deformation theory of plas-
ticity. After reference surface strains and curvature changes
have been computed throughout the structure by Egs. (8),
strains through the shell walls are calculated by the equations

e = & + ko € = €& I {x; (14a)
Assuming oz = 0 and all volume changes are elastic,
v 1+ 1 — 2
=7 @ttt ol =5 (& + )
(14b)
By definition,
21/2
€t = 3 ez — e0)® + (9 — €e)? + (e — €)?]V? (l4o)
0 . < o yield
Ou
€p = €0 " 5 T 211 e .
’ E fet_‘—(_';-—V)“;,T 0. > o yield
(15a)

in which the subscript » indicates the results of a uniaxial
tensile test. A plot of €. vs €. may be easily constructed
using Eqs. (15a). Finally, from the deformation theory of
plasticity,

€
€p = 3:: (260 — € — Gg’)

€op
ep = — (2 — eg — €
tp 36“( £ — € — €r)

(15b)

Plastic strains computed by Eqgs. (15) are used to improve
the level of approximation in the = terms of Eqs. (l¢) and
(8), establishing the iterative nature of this elastic-plastic
solution. After convergence of these plastic strains, stresses
are caleulated throughout the structure by Egs. (1d) and

o5 = (002 — ogor + o2)V? (16)

Results

A. Summary of Numerical Analysis Procedure

The method of analysis developed in this report is sum-
marized in Table 1. This table serves as a convenient flow
chart for computer programming of the method. The calcu-
lation procedure is as follows:

1) Express boundary conditions in finite difference nota-
tion and determine elements of matrices J, L, and B from
Eqs. (3). ,

2) Calculate geometry terms (I',0,A,1,®, and ¥), pressure
load terms (A; to A\i), and thermal load terms (r, to 74) for
all interior shell stations, using Egs. (1) and (8). Assume
convenient values (usually zero) for plasticity terms m; and
.
3) Calculate elements of matrices 4, B, and F for all in-
terior stations using Eqgs. (2). Steps 1 to 3 do not have to
be repeated during iteration that follows.

4) Compute elements of g matrix at all interior stations by
Eags. (2). .

5) Calculate pressure, thermal, and plasticity terms re-
quired for strain and moment calculations at boundary and
junction stations, using Eqs. (8).

6) Determine elements of remaining boundary condition
matrices k, m, and ¢ by Egs. (3).

7) Calculate elements of coefficient matrices P and g for
shells a and b, using Eqs. (5); P matrices for these two shells
do not change during iteration.

8) To begin junction calculations, determine elements of
W and z matrices at the junction stations in shells a and b,
from Eqgs. (9).

9) Calculate 8 terms for shells @ and b using ¥qs. (10).
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Fig.3 Sample problem.

10) Calculate & terms for shell ¢ using Egs. (12).

11) Calculate elements of W and z matrices at junction
station in shell ¢ by inverting Eqs. (10).

12) Complete junction caleulations by computing elements
of P and ¢ matrices at fictitious stationj = ¢ — 1.

13) As a continuation of step 7, calculate elements of P
and g matrices in shell ¢.

14) To begin the calculation of (rH) and g terms, compute
their values in shell ¢, using Eqgs. (6) and (4).

15) Calculate (rH) and 8 at the junction stations of shells
a and b by Egs. (7) and (10).

16) Continue step 14 in shells @ and b.

17) Calculate plasticity terms 73 and w4 for all shell sta-
tions using Egs. (8).

18) Calculate reference surface strains and curvature
changes using Eqs. (8).

19) Calculate total strains throughout the structure by
Eqgs. (14).

20) Calculate plastic components of strain by Egs. (15)
and an equivalent plastic strain vs equivalent total strain
diagram. :

21) Compute plasticity terms m and . for all interior
stations, using Eqs. (1) and the results of step 20. Repeat
steps 4 to 19 until the plastic components of strain have
converged sufficiently or for a fixed number of iterations.

22) Compute stresses throughout the structure, using Egs.
1) and (16).

For an elastic shell structure, equate all plasticity terms
to zero and proceed directly from step 19 to step 22.

B. Sample Problem

The geometry and loading of the sample problem structure
are illustrated in Fig. 3. The structure consists of two
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cylinders and a portion of a sphere joined at a common sec-
tion. Each shell has constant wall thickness and internal
pressure. The following dimensions, loads, and material
properties are selected so that yielding is incipient in the
membrane regions of the structure: 7 = 50.0 in., h, =
0.0866 in., 2, = 0.0500 in., A, = 0.1732 in., £ = 107 psi,
Ps = 100 psi, p, = 100 psi, p. =-200 psi, » = 0.333, and
Oyiela = 50,000 psi.

Postyield material behavior is assumed to follow the rela-
tionship

! = C1 + Caeet + Cslecs)? €t > Cs

€ep

L=0 eltSC4

The sample problem is solved for both a strain-hardening and
a perfectly plastic material. For these two cases, the mate-
rial coefficients become 1) for strain-hardening, C, = 1.287 X
1073, C, = —0.8655, C3 = 129.5, and C, = 4.445 X 1073,
and 2) for perfect plasticity, C, = —4.445 X 1073, C; = 1.00,
Cs; = 0,and Cy = 4.445 X 1073,

The shells are subdivided into meridional and transverse
stations with (As) = 0.25in, ¢ = 99, b = 200, ¢ = 202,
d = 300, and tpex = 7.

By referring to Fig. 2b and the junction detail of Fig. 3a,
the external junction moment becomes

M = 0.1116 V, — 0.1299 V. = —45.75 Ib-in./in.

Finally, if membrane deformaticn is assumed at all three
shell boundaries, the boundary condition matrices are

J=L=R=k=1t=0

I:(TNE cos<p)a+1] [52,592 lb:l
"= 0 Lo

The solution to this problem is presented in Fig. 3b in the
form of effective stress and strain concentration factors.
These factors are

and

K(o,) =

(o'e)max - Te )
(0‘ o)membrs.ne 50,000 psi max

_ (Eu)max _ €t
K6 = (e mamseens — \ 0004445 1030 s

The variation of these concentration factors with meridional
distance s, measured from the junction, is given for the three
cases considered. Referring to Fig. 3a, negative values of s
represent distances measured downward from the junction,
in shells @ and b.

In Fig. 3b, the solid lines represent the solution for a per-
fectly elastic material. Stress and strain concentration
factors are equal with a maximum value of 1.31 occurring at
the junction in shell b. Circles indicate the results of a
standard elastic discontinuity solution that uses edge in-
fluence coefficients. The dashed lines present results for
the strain-hardening material. Decreases in stress concen-
tration are accompanied by corresponding increases in strain
concentration, which reaches a maximum value of 1.44.
Finally, the dashed-dotted lines show the elastic-perfectly
plastic solution. This includes the upper limit of strain
concentration and lower limit of stress concentration for
various types of postyield behavior. Maximum -effective
strain concentration is 1.89, again occurring at the junction
in the hemispherical bulkhead.

The elastic solution is clearly verified by the standard
discontinuity analysis presented in Ref. 7. The two elastic-
plastic solutions may be evaluated by determining the ex-
tent to which they satisfy the junction continuity conditions
given in Egs. (7). The quantities that are compared in
these equations are presented in Table 2.
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Table 2 Junction deformations and forces

Strain-hardening solution

Perfectly plastic solution

Station Station
Quantity a b a b c
8, rad 0.01439 0.01439 0.01439 0.01671 0.01671 0.01671
&, in./in. 0.004522 0.004573 0.004540 0.004795 0.004819 0.004814
(rH), in.-1b/in. ~724.42 536.27 —188.15 —404.45 77.91 —326.54
M, 1b-in./in. 16.97 -5.09 —34.30 12.22 —0.93 —31.75

The meridional couples M; were determined from the
meridional stresses oy by numerical integration. With
these quantities, it can be shown that Eqs. (7) are satisfied
very closely for both cases.

For further verification, the present method was applied
to a continuous shell problem for which an elastic-plastic
solution had already been obtained. This problem, which
was presented in detail in Ref. 3, consisted of the deformation
of a uniform cylindrical shell by an axial thermal gradient.
Excellent agreement between the results of the two methods
was found, which shows that the numerical analysis pre-
sented in this report is equally applicable to continuous and
discontinuous shell regions.

Conclusions

A numerical method has been presented for solving prob-
lems involving the axisymmetric elastic-plastic deformation
of general shells of revelution which may contain discon-
tinuities in geometry, material properties, or loads. The
method was used to determine effective stress and strain
concentration factors at the common junction of three dis-
similar shells in the elastic-plastic regime. The following
conclusions were found :

1) This method produced an elastic solution that agreed
very well with that obtained by a standard discontinuity
analysis.

2) By using successive approximations, the method pro-
duced a convergent elastic-plastic solution.

3) In this elastic-plastic solution, conditions of equilibrium
and compatibility at the discontinuity were satisfied.

4) When applied to the analysis of a continuous shell re-
gion, close agreement with known elastic-plastic results was
found.

5) Elastic-plastic shells with discontinuities may be
analyzed with almost the same directness and ease as com-
pletely elastic continuous shells.
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